SiOC- und SiC-Faserverbundwerkstoffe für thermisch und tribologisch hochbelastete Leichtbaustrukturen

Rainer Gadow und Patrick Weichand

Outline:

- Introduction: Review on PMC and CMC
- Processing and Manufacturing of CMC
- Liquid Precursor Infiltration (LPI)
- PDC and SiOC Ceramics
- SiOC-Composite Properties
- Thermal resistivity
- Tribological evaluation
- Summary and conclusions

Heraeus Holding GmbH, Hanau 22.01.2015

Hochtemperatur -Verbundwerkstoffe für den Leichtbau

materials valley

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites **R. Gadow**

IFKB P-731a

Strength and Maximum Service Temperature of various Materials

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites

PMC – Polymer Matrix Composites

University of Stuttgart

CMC – Ceramic Matrix Composites

Rolls-Royce jet engine (RR-Derby)

Advantages:

Porsche

- ✓ good mechanical properties
- ✓ service temperatures up to over 1800 °C
- ✓ quasi-elastic failure behavior
- ✓ excellent wear resistance

Disadvantages:

- very complex manufacturing processes
- very expensive raw material base (ceramic-fibers)
- adjusted fiber-matrix-interface essential

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites R. Gadow IFKB P-731a

slide 4

Manufacturing Scheme for Fiber Reinforced Composites

Raw Materials

Filler (graphite, SiC, ...)
Fibers
Carbon Precursors (thermoplastic: pitch, PAM-precursors; thermoset: phenolic-, epoxy-, furan-resins)
Metal-organic ceramic Precursors (Silane, Siloxane, Silazanes)

University of Stuttgart

Incorporation and Alignment of Fibers / Matrix Consolidation and Preform Manufacturing

Production Cycle Times of Different Processing Techniques

appropriate manufacturing technologies for fiber reinforced ceramics

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites R. Gadow IFKB P-731a

slide 6

Problems occurring during Chemical Reaction and Reaction Bonding of SiC

- incomplete metal impregnation and chemical transformation caused by pore neck closure or insufficient metal melt excess
- inhibition on internal surface by formation of wetting effective undesired byproducts (SiO etc.)
- excessive free silicon content in the CMC caused by exaggerated original compact porosity with a resulting decrease in mechanical properties

risk of fiber damage by micromechanical effects and chemical interaction during harsh transformation reaction conditions

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites

CMC - High-Temperature-Techniques for Matrix Consolidation

Siliconizing of carbonaceous, porous preforms

liquid silicon impregnation method for the fabrication of SiC composite materials by **reaction bonding** of porous fiber preforms with additional carbon matrix

selective conversion of a porous carbon binder and filler matrix to SiC,

while the reinforcement fiber is not or only slightly attacked by the Si melt

C_f-RB-SiC CMC-Brake Disk

SEM fracture surface of FeSi75SiC

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites **R. Gadow**

IFKB P-731a

C_f/Si(RB)SiC-Brake rotors for passenger cars

IFKB University of Stuttgart

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites

Fundamentals of chemical transformation reaction to SiSiC composites

- Heterogeneous chemical reaction of carbon with Si liquid or vapor impregnation at high temperatures (1600 – 2000 °C)
- Hot pressing of powder compacts at high temperatures under protective atmosphere
- Harsh conditions for the fiber component during processing
- Protective interlayers and fiber coatings required to control CMC fracture toughness
- Extremely high investment cost in HT vacuum furnaces and instrumentation
- Complex and cost intensive total manufacturing chain

Advantages of PDC in processing and manufacturing engineering

- Viscous flow behavior of matrix precursors used for forming processes
- Reduced process temperatures and thermochemical load for the fiber component during processing
- Fast and effective forming processes as established for polymers and plastics
- High surface quality depending on tool or die geometry and surface quality
- Cheap thermal treatment under atmospheric conditions

Requirements:

- Low viscosity, good wetting behavior
- Polymerization by thermal, chemical or photochemical activation
- · Pyrolysis mainly in solid state
- High yield of amorphous ceramics with defined composition
- Thermochemical and phase stability at high temperatures
- Easy handling
- Low cost material

- 1. Low cost Matrix
- 2. Low cost reinforcement
- 3. Inexpensive Manufacturing Process

Intermediate temperature Composite Materials with decent mechanical properties

Liquid Precursor Infiltration – LPI and controlled pyrolization

- Low processing temperatures
- Adaption to Polymer techniques possible
- Possibility of manufacturing porous Materials

Classic CMC-Manufacturing (simplified):

University of Stuttgart

Institute for Manufacturing Technologies of Ceramic Components and Composites

Basalt Fiber

- principal properties -

- Mineral fiber (aluminosilicate)
- Green-brown coloured
- Amorphous microstructure
- Conventional application comparable to glass fiber
- Mainly produced in Russia, Austria, China, Ukraine

Basic raw material: basaltic stone

SEM-picture of basalt fiber surface

Basalt-fiber roving

Basalt fabric plain weave

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites

Basalt Fiber

- correlation between chemical composition and mechanical properties -

IFKB University of Stuttgart

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites

Adaption of PMC-Manufacturing

Uniaxial Warm Press Molding

Resin-Transfer-Moulding

Filament-Wet-Winding

Injection-Moulding

Properties of SiOC-Hybrid-Composite

polished surface with reinforcement structure $R_a=0,19$

- Density: 2,1-2,5 g/cm³
- Max. service temperature: 600 °C
- Short term stability: 1000 °C
- CTE: ~ 5 ppm (V2A: >18; AI-alloys: >23)
- High wear resistivity
- Non flammable
- Very attractive price level

SEM fracture surfaces with fiber-pull-out

B50_f/SiOC turbine blade

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites

Bending strength at elevated temperatures

- 3 point-bending at 500 and 600 °C in air -

Rolls-Royce University Technology Centre (UTC) in Materials, Swansea (UK)

	V1 (UD)		V2 (U	D)	V3 (2D)	
Temp.	UTS [MPa]	E _{fail}	UTS [MPa]	E _{fail}	UTS [MPa]	E _{fail}
RT	321	0,042	446	0,038	158	0,028
500 °C	280	0,040	201	0,041	40	0,008
600 °C	155	0,038	155	0,041	71	0,019

stress-strain diagramm at 500 °C

Bache, M.; Gadow, R.; Newton, C.; Weichand, P.: Mechanical Assessment of a Basalt Based Ceramic Matrix Composite, 14th European Inter-Regional Conference on Ceramics, Hrsg. Gadow, R.; Kern, F., Stuttgart, (2014)

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites

Hardness evolution of SiOC matrix and Basalt fibers

Micro hardness $HV_{0,1}$ of the matrix and $HV_{0,03}$ of the fibers after different pyrolysis temperatures

	HV	maximum force	
Fiber	HV _{0,03}	294.199 mN	
Matrix	HV _{0,1}	980.665 mN	

Indentation modulus of matrix and fibers after different pyrolysis temperatures

Vickers indentation on basalt filament

slide 19

Characterization – Tribological Properties (Wear Behavior)

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites

University of Stuttgart

Tribological Behavior of Different Brake Rotor Materials

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites

University of Stuttgart

Volumetric wear of various brake rotor materials

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites

Application– Composite Exhaust System

- competitive alternative up to 1000 °C short term application -

Manufacturing of the whole structure in one step without insulation needed

Exhaust silencer demonstrator: weight saving >65 % vs. stainless steel Materials for exhaust systems:

(limiting factor)

- steel/stainless steel (high weight)
- Inconel (Ni-alloys) (Formula 1)
- titanium (high price)
- aluminum (limited service temperature)
- CFRP (limited service temperature)
- CMC (SiC/SiC) (exorbitant price)

Hybrid Composite

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites

Application – Composite Brake Rotor Disk

Brake rotor for bicycles after 150 km test run

Gen2 brake rotors

- adjustable friction properties-

- B_f- and C_f-SiOC composites, a competitive alternative to
 C/SiC or CFC materials for friction applications in e-mobility, (motor-)cycles
- Full composite material rotor and brake pad design for maximum weight saving

organic brake pad after 150 km test run with $B_f/SiOC$ rotor

full composite brake pad design (CF)

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites

slide 24

R. Gadow

IFKB P-731a

	Cast Iron	C/C	SiSiC	FeSi75SiC	B _f -SiOC
density [g/cm³]	7,25	1,85	2,79-2,99	3,12	2,1-2,5
HV01 [kg/mm²]	715	69	SiC 2428 Si 1345	SiC 2428 Si 1345 FeSi ₂ 753	300-1000
coefficient of friction µ	0.30-0.50	0.25-0.35	0.45-0.55	0.55-0.6	0.41-0.6
max. application temperature [°C]	700	500-600 in air	1350	1350	600

- "True" SiC composites need expensive HT process chains with additional fiber coatings and controlled interfaces to match the mechanical properties
- High temperatures during Si liquid or vapor impregnation are a strong limitation for the fiber selection
- Extremely high investment cost in HT vacuum furnaces and instrumentation
- Hot pressing at high temperatures under protective atmosphere means harsh
 conditions for the fiber component during processing
- Intermediate temperature composites like SiOC enable the adapation of cheap and effective forming and shaping techniques as established for polymers and plastics
- Thermal treatment can be made under atmospheric conditions
- Basalt fibers are a cost effective alternative to carbon and ceramic fibers for intermediate temperature applications and superior to glass fibers
- SiOC composites meet the technical <u>and</u> economic requirements of the automotive industry

Institut für Fertigungstechnologie keramischer Bauteile

Tel:	+49 711 / 685-68301
Fax:	+49 711 / 685-68299
E-mail:	ifkb@ifkb.uni-stuttgart.de
URL:	www.ifkb.uni-stuttgart.de

Diese Arbeit wurde unterstützt von: - Ministerium für Wissenschaft, Forschung und Kunst, Baden-Württemberg

- Stiftung Industrieforschung, Köln
- Deutsche Forschungsgesellschaft(DFG).

Institut für Fertigungstechnologie keramischer Bauteile Institute for Manufacturing Technologies of Ceramic Components and Composites